SYLLABUS

Instructor:	Dr. Kejian Shi shikejian @ fhda.edu e-mail: Office Hour:
	Wednesday, 10:00am-11:00am virtual office hour via zoom on canvas
Prerequisites:	Math 1C (with a grade of C or better), or equivalent
Textbook:	CALCULUS - Early Transcendentals, $8^{\text {th }} \mathrm{E}$ (California Edition), by James Stewart
Materials:	Graphing calculator recommended

Attendance: | This class is an online asynchronous class. My daily lecture videos will be posted on the Canvas. |
| :--- |
| Students are expected to watch and study the videos daily. Different people can watch at different |
| times during the day. The videos can be watched multiple times. Questions will be answered |
| during office hours or through email. (It is the students' responsibility to drop by the |
| appropriate deadline. Petitions to drop after the deadline will not be considered by the |
| instructor.) |

Homework: | Homework is the key to success in this class. Plan to devote a minimum of TWO hours to |
| :--- |
| homework for each class lesson. |

Quizzes: \quad| Three Quizzes (33, 33, and 34 points) will be given from 8:00pm-9:00pm on the quiz day. No |
| :--- |
| makeup quizzes. Quiz problems are similar to homework problems and lecture examples. |

Midterms: \quad| Two midterm examinations (100 points each) will be given from 8:00pm-10:00pm on the |
| :--- |
| midterm exam day. No makeup except for extenuating circumstances assuming the student |
| notifies the instructor as soon as the emergency arises. |

Final Exam: \quad| One comprehensive examination will be given from 8:00pm-11:00pm on Wednesday, March |
| :--- |
| $\mathbf{2 9 , 2 0 2 3}$. Any student missing the final will receive an F grade for the course. |

Integrity:
Any types of cheating are not tolerated. Corresponding school rules will be followed.

Grading: Distribution Scale

		Grade	Points	Percentage
Quizzes	100	A+	$473-500$	$95 \%-100 \%$
		A	$448-472$	$90 \%-94 \%$
Midterms	200	A-	$438-447$	$88 \%-89 \%$
		B+	$423-437$	$85 \%-87 \%$
		B	$398-422$	$80 \%-84 \%$
Final Exam	200	B-	$388-397$	$78 \%-79 \%$
	-------	C+	$373-387$	$75 \%-77 \%$
Total		500	C	$323-372$

Math 1D-51Z Tentative Schedule (Winter 2023):

Winter 2023								
	MONDAY	TUESDAY	WEDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	Wk
Jan	$\begin{array}{\|c\|} \hline 9 \\ \text { INSTRUCTION } \\ \text { BEGINS } \\ 14.1 \\ \hline \end{array}$	14.2	14.3	14.3	13 14.4	14	15	1
Jan	16 M L K Holiday (No class)	14.4	14.5	14.6	 Quiz \#1 8:00pm-9:00pm	Last Day to Add	22 Last Day to Drop without $a \mathrm{~W}$	2
Jan	Census Day 14.6	14.7 ${ }^{24}$	14.7	14.8	15.1	28	29	3
Jan / Feb	15.2	15.2	15.3	Review	 Exam \#1 8:00pm-10:00pm	4	5	4
Feb	6 Solutions	15.4	15.4	9 15.5	15.6	11	12	5
Feb	15.6	15.7	15.8	16 Quiz \#2 8:00pm-9:00pm	Lincoln's B-Day Holday (No class)	18 President's Week	nd 19	6
Feb	20 Washington's B-day Holiday (No class)	15.9	15.9	$\begin{array}{ll} 23 \\ 16.1 & \\ \hline \end{array}$	16.2	25	26	7
Feb $/$ March	16.2	16.3	16.3	Review	Last day: drop with a ${ }^{3}$ Exam \#2 8:00pm-10:00pm	4	5	8
March	6 Solutions	16.4	16.4	16.5	16.5	11	12	9
March	16.6	16.6	16.7	16.7	 Quiz \#3 8:00pm-9:00pm	18	19	10
March	16.8	16.8	16.9	16.9	24 Review	25	26	11
$\begin{array}{\|c\|} \hline \text { March } \\ \text { / } \\ \text { April } \end{array}$	27	28	29 Final Exam 8:00pm-11:00pm	30	31	1	2	12

Sections	Problems
14.1	1, 4, 7, 10, 18, 21, 25, 31, 45, 48, 68
14.2	5, 8, 11, 14, 17, 20, 26, 29, 32, 35, 38, 41
14.3	1, 4, 7, 10, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45
14.3	48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87
14.4	1, 4, 7, 11, 14, 17, 21, 24, 27, 30, 33, 36, 39, 42, 45
14.5	1, 4, 7, 10, 13, 16, 19, 22, 25, 28
14.5	31, 34, 37, 40, 43, 46, 49, 52, 55, 58
14.6	4, 7, 10, 13, 16, 19, 22, 25, 28, 41, 44, 51, 55
14.7	1, 4, 7, 10, 13, 16, 19, 22, 31, 34, 37, 43, 47, 50, 59
14.8	1, 4, 7, 10, 13, 16, 19, 22, 25, 30
15.1	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 47, 50
15.2	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31
15.2	$35,37,40,45,48,51,54,57,60,62,65,68$
15.3	1, 4, 6, 7, 10, 13, 16, 19, 22, 25, 29, 32, 34, 37, 40
15.4	1, 4, 7, 10, 13, 16, 19, 22, 28
15.5	1, 4, 7, 10, 13, 21, 24
15.6	2, 4, 7, 10, 13, 16, 19, 22, 25, 28
15.6	31, 34, 35, 37, 40, 43, 46, 48, 51, 54
15.7	1, 4, 6, 8, 9, 11, 15, 18, 21, 24, 27, 30
15.8	1, 4, 6, 8, 10, 13, 16, 18, 20, 23, 26, 29, 32, 35, 42, 48
15.9	1, 4, 7, 10, 11, 14, 16, 19, 22, 25, 27
16.1	1, 4, 7, 10, 13, 16, 21, 24, 25, 31, 34
16.2	1, 4, 7, 10, 13, 16, 19, 22, 25, 33, 36, 39, 42, 45, 48
16.3	1, 4, 7, 10, 13, 16, 19, 22, 24, 26, 29, 32, 35
16.4	1, 4, 7, 10, 11, 14, 17, 21, 24, 27
16.5	1, 4, 7, 10, 12, 15, 18, 21, 24, 27, 30, 33, 34
16.6	1, 4, 13, 16, 19, 22, 25, 33, 36, 39, 42, 45, 48, 51, 61, 62
16.7	1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 37, 40, 43, 46, 49
16.8	1, 4, 7, 10, 13, 16, 19, 20
16.9	1, 4, 7, 10, 13, 17, 19, 24, 26, 29

Student Learning Outcome(s):

*Graphically and analytically synthesize and apply multivariable and vector-valued functions and their derivatives, using correct notation and mathematical precision.
*Use double, triple and line integrals in applications, including Green's Theorem, Stokes' Theorem and Divergence Theorem.
*Synthesize the key concepts of differential, integral and multivariate calculus.

Office Hours:

M,T,W,TH 10:00 AM 11:00 AM Zoom

