SYLLABUS

Instructor:	Dr. Kejian Shi e-mail:
shikejian@fhda.edu	
Office \& Phone:	S-16A, (408)864-8481
Office Hour:	MTWTh:10:30--11:00 a.m., 1:30 p.m. - 2:00, and F: 10:30 --11:00 a.m. or by appointment
Prerequisites:	Math 1B (with a grade of C or better), or equivalent
Textbook:	CALCULUS - Early Transcendentals, the $8^{\text {th }}$ Ed. by James Stewart
Materials:	A scientific calculator recommended

Attendance:	Students are expected to attend all classes on time. It is the students' responsibility to drop by the appropriate deadline. Petitions to drop after the dead line will not be considered by the instructor.
Homework:	Three Homework sets will be collected, each on the examination days (20 points for each collection). No late hws will be accepted. Hw is the key to success in this class. Plan to devote a minimum of TWO hours to hw for each class hour.
Quizzes:	Three Quizzes (33, 33, and 34 points) will be given in class. No makeup quizzes. Quiz problems are similar to homework problems and lecture examples.
Midterms:	Two one-class-hour midterm examinations (100 points each) will be given in class. No makeup except for extenuating circumstances assuming the student notifies the instructor as soon as the emergency arises.

Final Exam: One two-hour comprehensive examination will be given on Monday, 3/23/2020, from 11:30am-1:30pm. Any student missing the final will receive an F grade for the course.

Integrity: Any type of cheating is not tolerated. Corresponding school rules will be followed.

Grading:	Distribution		Scale		
			Grade	Points	Percentage
	Attendance	40	A+	567-600	95\%-100\%
			A	537-566	90\%-94\%
	Homework	60	A-	525-536	88\%-89\%
			B+	507-524	85\%-87\%
			B	477-506	80\%-84\%
	Quizzes	100	B-	465-476	78\%-79\%
			C+	447-464	75\%-77\%
			C	387-446	65\%-74\%
	Midterms	200	D+	357-386	60\%-64\%
			D	345-356	58\%-59\%
			D-	327-344	55\%-57\%
	Final Exam	200	F	0-326	0\%-54\%

Tentative Schedule:

Winter 2020								
	MONDAY	TUESDAY	WDDNESDAY	THURSDAY	FRIDAY	SATURDAY	SUNDAY	Wk
Jan	6 INSTRUCTION BEGINS 10.1	\qquad 7 10.2		$\begin{array}{rr\|} \hline & \\ & \\ 10.3 & \\ \hline \end{array}$		11	12	1
Jan	$\begin{array}{rr\|} \hline & 13 \\ 10.4 & \\ \hline \end{array}$	$\begin{array}{rr\|} \hline & 14 \\ 11.1 & \\ \hline \end{array}$	$\begin{array}{rr\|} \hline 15 \\ 11.1 & \\ \hline \end{array}$	11.216 	Review Quiz \#1	Last Day to Add 18	Last Day to Drop with refund/credit, with no record.	2
Jan	20 ML K Holiday No Class	${ }^{21}{ }^{21}$ Solutions 11.2	11.3	11.3, 11.4 23	11.4	25	26	3
$\begin{gathered} \text { Jan } \\ / \\ \text { Feb } \end{gathered}$	$11.5{ }^{27}$	$\text { 11.5, } 11.6$	11.6	Review 30 Hw/Proj. 1 Due	Last day to request $P / N P$ Exam \#1	$\square{ }^{1}$	2	4
Feb	3 Solution	11.7	$11.8{ }^{5}$		7 11.9	${ }^{8}$	9	5
Feb	11.9	11.911 18	$\begin{array}{\|r\|} \hline 12 \\ 11.10 \\ \hline \end{array}$	Review Quiz \#2	14 Lincoln's B-Day Holday No Class	President's Week	kend 16	6
	17 ashington's B-day Holiday No Class	18 Solution 11.10	11.11	$17.4{ }^{20}$	17.4	22	23	7
Feb 1 March	$12.1{ }^{24}$	12.2	26 $12.2,12.3$	Hw/Proj. 2 Due 27	28 Last Day to drop with a W Exam \#2	29	Last day to fileWinter degree or certificate	8
March	2 Solution	12.3 3	\qquad 12.4	\square 12.4	12.5	7	8	9
March		12.6 10 	13.1 11	12 13.2	Review Quiz \#3	14	15	10
March	Solution 13.3	$13.3 \quad 17$	$13.4{ }^{18}$	19 13.4	Review ${ }^{20}$ Hw/Proj. 3 Due	21	22	11
March	23 FINAL EXAM 11:30AM-1:30	24	25	26	27	28	29	12
April	30	31	1	2	3	4	5	0
April	SPRING 6 INSTRUCTION BEGIN	7	8	9	10	11	12	1

Homework Problems:

Sections	
	HW \#1
10.1	$3,5,11,13,19,21,37$
10.2	$3,5,7,11,13,15,17,29,31,33,37,39,43,49,51,57,61,65$
10.3	$7,9,11,15,17,23,25,29,33,37,39,55,57,61,63$
10.4	$1,3,9,13,17,21,23,25,27,29,31,35,37,39,41,45$
11.1	$5,7,9,11,13,17,19,23,27,33,37,45,49,51,57,59,65,70,73,75,77,79,81$
11.2	$5,9,11,15,19,23,29,33,37,39,41,43,45,51,57,59,61,67,75$
11.3	$2,3,7,11,15,17,21,29,35,37,39$
11.4	$1,3,5,7,9,11,15,19,23,27,29,31,33,35,41$
11.5	$3,7,9,13,17,21,23,25,27$
11.6	$1,3,5,7,9,13,19,25,29,31,37,39,43$
	HW\#2
11.7	$1,3,5,7,9,11,13,15,17,19,21,23,25,27,29$
11.8	$5,7,11,15,19,23,29,30,32,35$
11.9	$3,5,7,9,13,15,19,25,27,29,31,34,37$
11.10	$4,5,9,11,15,21,25,31,33,35,39,53,55,57,59,61,63$
11.11	$5,7,9,13,19,27$
17.4	$1,3,5,7,9,11$
12.1	$3,5,9,11,13,15,17,23,41,45,47$
12.2	$3,5,7,11,13,19,21,25,26,27,29,31,33,37,41,45,47$
	HW $\# 3$
12.3	$3,7,9,13,15,19,23,27,29,33,39,43,47,49,51,55,57$
12.4	$3,7,9,11,13,17,19,23,27,29,31,33,35,37,39,43,45$
12.5	$7,11,13,15,19,21,23,25,27,31,33,35,37,39,41,45,49,51,55,57,59,64,65,67,71,73$
12.6	$3,5,7,9,11,15,17,19,21,28,35,37$
13.1	$1,3,5,7,11,13,15,17,27,29,33,35,37,42,43,45,49$
13.2	$3,5,7,11,13,17,19,21,23,25,33,35,37,41$
13.3	$3,5,7,11,13,17,19,21,25,27,29,30,31,37,43,47,49,53,57$
13.4	$3,5,7,9,13,15,17,19,22,23,25$

Student Learning Outcome(s):

*Graphically, analytically, numerically and verbally analyze infinite sequences and series from the perspective of convergence, using correct notation and mathematical precision.
*Apply infinite sequences and series in approximating functions.
*Synthesize and apply vectors, polar coordinate system and parametric representations in solving problems in analytic geometry, including motion in space.

