SIMPLE HARMONIC MOTION

OBJECTIVE

To calculate the spring constant ' k ' of a spring by using Hooke's Law and N2L and compare the results.

EQUIPMENT

1. 2-support rods and clamp
2. spring
3. masses and hanger
4. stopwatch
5. $2-\mathrm{m}$ stick
6. Triple-Beam Balance

THEORY

I. Using Hooke's Law

Consider a spring suspended vertically in its equilibrium position. Suppose you add a mass ' m ' to the end of the spring that displaces the spring an amount ' x ' from equilibrium.

Applying N2L gives:
$\sum F_{x}=m g-k x=0$
$m g=k x$

1. The graph of $\underline{m g}$ vs. x will give a straight line with the slope of the line equal to the spring constant ' k '.
2. We will take this value of ' k ' to be the expected value.

II. Using N2L

Suppose you add a mass ' m ' to the end of a suspended vertical spring. The mass displaces the spring an amount ' x_{1} ' from equilibrium. In this position the mass is in equilibrium. Consider displacing the spring an amount ' x ' from the new equilibrium position.

Applying N2L for the first displacement gives:
$\sum F_{x}=m g-k x_{1}=0$
$m g=k x_{1}$

Applying N2L for the second displacement gives:
$\sum F_{x}=m g-k\left(x+x_{1}\right)$
$\sum F_{x}=m g-k x-k x_{1}$
$\sum F_{x}=k x_{1}-k x-k x_{1}$
$\sum F_{x}=-k x$ Net Force on Mass
$\sum F_{x}=-k x=m \frac{d^{2} x}{d t^{2}}$
$\frac{d^{2} x}{d t^{2}}+\left(\frac{k}{m}\right) x=0$ Simple Harmonic Motion Equation

1. Confirm that the solution to this equation is given by:

$$
x(t)=A \cos (\omega t+\phi) \text { Solution to SHM Equation }
$$

Where,

$$
\begin{aligned}
& x(t)=\text { amplitude of oscillation (rad) } \\
& A=\text { maximum amplitude of oscillations from equilibrium (rad) } \\
& \omega=\sqrt{\frac{k}{m}} \text { (angular frequency in units of } \mathrm{rad} / \mathrm{s} \text {) It is a measure of how fast } \\
& \text { the oscillations occur. } \\
& t=\text { time (s) } \\
& \varphi=\text { phase angle (rad) (determined by initial conditions) }
\end{aligned}
$$

2. The cosine and sin function repeat every period T. Thus:

$$
\begin{aligned}
& \theta(t)=\theta(t+T) \\
& \left.\theta_{m} \cos (\omega t+\phi)=\theta_{m} \cos [\omega(t+T)+\phi)\right] \\
& \left.\theta_{m} \cos (\omega t+\phi)=\theta_{m} \cos [(\omega t+\phi)+\omega T)\right]
\end{aligned}
$$

The sine and cosine repeat when their phase changes by 2π. Thus, $\omega T=2 \pi$
$T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{k}{m}}}=2 \pi \sqrt{\frac{m}{k}}$
$T^{2}=\left(\frac{1}{k}\right) 4 \pi^{2} m$
3. The graph of T^{2} vs. $4 \pi^{2} \mathrm{~m}$ will give a straight line with the slope equal to $1 / \mathrm{k}$.
4. We will take this ' k ' value to be the experimental result and compare to the expected value.

PROCEDURE

1. Attach spring to horizontal rod and measure equilibrium position.
2. Attach 100 g to end of spring and measure displacement ' x ' from equilibrium.
3. Displace the mass slightly from equilibrium and release.
4. Measure the time for 10 oscillations and calculate the period. Repeat for a total of 3 runs.
5. Repeat steps (1) - (4) for the masses listed in the table below and fill in the rest of the data.
6. Make a graph of $m g v s$. x using EXCEL and from the equation of the best curvefit determine the expected value of k .
7. Make a graph of $T_{\text {ave }}^{2} \nu s .4 \pi^{2} m$ using EXCEL and from the equation of the best curve-fit determine the experimental value of k.
8. Compare both values of k.

DATA TABLE

$\mathrm{m}($ gram $)$	mg	x	t 1	$\mathrm{~T}_{1}$	t_{2}	$\mathrm{~T}_{2}$	t_{3}	$\mathrm{~T}_{3}$	$\mathrm{~T}_{\text {ave }}$	$T_{\text {ave }}^{2}$	$4 \pi^{2} \mathrm{~m}$
100											
150											
200											
250											
300											

