OBJECTIVE

- a) Calculate the acceleration of gravity 'g' and compare with expected value by analyzing the motion of a pendulum moving with Simple Harmonic Motion(SHM).
- b) Calculate the length of a pendulum so that it can be used a pendulum clock.

EQUIPMENT

- 1. 2-m length of string
- 2. 1 large support rod, 1 small support rod, and 1 clamp
- 3. hanger
- 4. stopwatch
- 5. 2-m stick

THEORY

Consider a pendulum of length 'L' and mass 'm'. Suppose the pendulum is swinging and at an instant in time its angular position is ' θ ' with respect to the vertical. The Free-Body diagram for the pendulum is shown below at this instant in time.

1. Show that by applying N2L in the tangential direction ($\Sigma F_t = ma_t$) and by assuming small oscillations (small θ), the following equation must be satisfied:

$$\frac{d^2\theta}{dt^2} + \left(\frac{g}{L}\right)\theta = 0$$
 Simple Harmonic Equation

2. Confirm that the solution to this equation is given by:

$$\theta(t) = \theta_m \cos(\omega t + \phi)$$
 Solution to SHM Equation

Where,

 $\begin{aligned} \theta(t) &= \text{amplitude of oscillation (rad)} \\ \theta_m &= \text{maximum amplitude of oscillations from equilibrium (rad)} \\ \omega &= \sqrt{\frac{g}{L}} \quad (\text{angular frequency in units of rad/s}) \text{ It is a measure of how fast} \\ & \text{the oscillations occur.} \\ t &= \text{time (s)} \\ \varphi &= \text{phase angle (determined by initial conditions) (rad)} \end{aligned}$

3. The cosine and sin function repeat every period T. Thus:

$$\theta(t) = \theta(t+T)$$

$$\theta_m \cos(\omega t + \phi) = \theta_m \cos[\omega(t+T) + \phi)]$$

$$\theta_m \cos(\omega t + \phi) = \theta_m \cos[(\omega t + \phi) + \omega T)]$$

The sine and cosine repeat when their phase changes by 2π . Thus,

$$\omega T = 2\pi$$

$$\pi - 2\pi - 2\pi = 2\pi$$

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{\sqrt{\frac{g}{L}}} = 2\pi\sqrt{\frac{L}{g}}$$
$$T^{2} = \left(\frac{1}{g}\right)4\pi^{2}L$$

4. The graph of T² vs. $4\pi^2$ L will give a straight line with the slope related to the acceleration of gravity 'g'.

PROCEDURE

- 1. Setup apparatus
- 2. Measure length of pendulum (for corresponding length) from pivot point to the center of mass of hanger.
- 3. Measure the time for 10 oscillations and calculate the period. Repeat for same length for a total of 3 runs.
- 4. Calculate the average period for the 3 runs.
- 5. Repeat steps (2) (4) for the length measurements indicated on the table below and fill in the data.
- 6. Make a graph of $T_{ave}^2 vs. 4\pi^2 L$ using EXCEL and obtain the equation of the best curve-fit.
- 7. Calculate the acceleration of gravity from equation.

- 8. Find the expected value of gravity g_{exp} on the Internet and compare with experimental result.
- 9. Using your equation for the best curve-fit , calculate the length of your pendulum so that it can be used as a pendulum clock.
- 10. Set the length of your pendulum to that calculated on step (9) and measure the time for 30 oscillations.
- 11. Can your pendulum be used as a clock? Explain your answer.

L(cm)	t_1	T ₁	t ₂	T ₂	t ₃	T ₃	T _{ave}	T_{ave}^2	$4\pi^2 L$
50									
70									
90									
110									
130									
150									

DATA TABLE