TITLE - Resistors in Series and Parallel

OBJECTIVE - To analyze the properties of resistors connected in series and parallel.

EQUIPMENT

1. HP-DMM (used as an ammeter)
2. Hand-held DMM (used as a voltmeter)
3. Power Supply
4. 2 different resistors less than $5 \mathrm{~K} \Omega$
5. Circuit boards
6. Leads and alligator clips

THEORY

$$
\begin{aligned}
& \text { Since } V_{1}=V_{2}=V \text {, then } I_{1} R_{1}=I_{2} R_{2} \\
& \qquad I_{1}=\left(\frac{R_{2}}{R_{1}}\right) I_{2} \\
& \text { If } R_{1}<R_{2}, \text { then } I_{1}>I_{2} \\
& \text { If } R_{2}<R_{1}, \text { then } I_{2}>I_{1} \\
& \text { so More current flows through path af least } \\
& \text { resistance. }
\end{aligned}
$$

Procedure

Part 1: Measuring Req

1. Measure R_{1} and R_{2} with the $D M M$.
2. Connect R_{1} and R_{2} in series, using the circuit board, and measure $R_{\text {eq }}$ with the DMM. Compare $R_{\text {eq }}$ with the expected value of $R_{e q}=R_{1}+R_{2}$.
3. Connect R_{1} and R_{2} in parallel, using the circuit board, and measure $R_{\text {eq }}$ with the DMM. Compare $R_{\text {eq }}$ with the expected value of $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}$.

Part 1: Series Combination

1. Connect R_{1} and R_{2} in series and apply a voltage of $\approx 10 \mathrm{~V}$ with power supply.
2. Measure the total current in the circuit and compare with expected value of $l_{\text {expected }}=V / R_{\text {eq }}$, where $R_{\text {eq }}=R_{1}+R_{2}$.
3. Measure V_{1} and V_{2} and show that $V=V_{1}+V_{2}$.
4. Calculate $I_{1}=V_{1} / R_{1}$ and $I_{2}=V_{2} / R_{2}$ and show that $I_{1}=I_{2}=I$.

Part 2: Parallel Combination

1. Connect R_{1} and R_{2} in parallel and apply the same voltage as in the series combination.
2. Measure the total current in the circuit and compare with the expected value of $l_{\text {expected }}=V / R_{\text {eq }}$, where $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}$
3. Measure I_{1} and I_{2} and show that $I_{1}+I_{2}=I_{\text {measured }}$
4. Measure V_{1} and V_{2} and show that $\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{V}$.
5. Calculate $I_{1}=V_{1} / R_{1}$ and $I_{2}=V_{2} / R_{2}$ and show that $I_{1}+I_{2}=$ lexpected.
6. Compare $I_{1}=V_{1} / R_{1}$ and $I_{2}=V_{2} / R_{2}$ with measured values.
