Math 10 Quiz Chapter 13 and 12: ANOVA & Linear Correlation/Regression

Note: Our quiz solutions start on the third page of this document. The first two pages discuss the alligator data (which is real data).

The alligator data is a good example of why we can't predict for x values outside of the range of x values in our data.

The 19 alligators in the quiz are a subsample of the sample that has 25 alligators. The 3 smallest and 3 largest alligators were removed from the original sample to create our subsample.

For the 19 alligators in our sample between 69 and 94 inches in length, the line DOES give a reasonable model to predict weight based on length.

However if we consider data outside that range, the linear relationship does not hold true. A curve would be a better fit.

The next page contains a graph of a line fit to our subsample of 19 alligators' data and a curve fit to the entire sample of 25 alligators' data. You can see the curve is a better fit for the entire data set. The curve is a cubic curve (third degree). This makes sense as weight is better related to volume than to length.

The 128 inch alligator referred to in one of the quiz questions actually weighs 366 pounds but our line would have predicted its weight as only 211 pounds. That's why we should not predict outside the range of the x values in our data – we have no evidence to assume the linear relationship extends beyond our data, as it in fact does not in this particular data set.

Alligator length (x inches) and weight (y pounds)

Name LastFir	st_KEY	Cla	ss Time:	Pink	Form
Math 10 Quiz 7 Ch 12&13 Form I	B Winter 2019 20 pc	oints			
This quiz contains two questions regression and correlation.	, one question for a	nalysis o	f variance	and one qu	estion for li
	ndal Charles		· · · · · ·		
Question 1: 8 points; Environmen				vel of Pollut	
The levels of a certain type of pollut different monitoring sites: Location	ant are monitored at t	hree	Location	Location	Location
Data were collected for a random sai	M, Location B, Loca mple of 6 days at each	tion C.	8.9	7.4	7.2
location.			8	8.3	6
Perform the appropriate hypothesis test to determine if the			8.3	7.1	6.8
population average pollution levels are the same for all sites.			7.9	6.5	7.7
On the board use or:	= .05"		7.4	7.6	6.7
,	his sample data: $\overline{\overline{x}} =$	7.467	$\frac{8.1}{\overline{x}_4 = 8.1}$	$\begin{array}{c c} 7.5 \\ \hline \bar{x}_{\scriptscriptstyle R} = 7.4 \end{array}$	7
	_		А	ь	$\overline{x}_C = 6.9$
Null Hypothesis: The popula	ation mean	DOILO	tion lev	els at	
all 3 locations are	e eaval	(14=1	10=/10	\	
Alternate Hypothesis: The	estatos ties		W - MC)	
Alternate Hypothesis: The popular of	polation Mez	m bc	HUTTON	o levels	<u>or</u>
Some (or at least or	ne) location	s are	<u>alter</u>	ent.	
Test Statistic = 7.14 p-valu	ne = <u>10066</u>				
What probability distribution is used t	to find p-value? (Incl	ude degree	es of freedo	m): <u>F</u> <u>é</u>	2, <u>15</u>
Draw the graph for this hypothesis test -	label the test statistic or	the graph	- shade and	label the p-va	lue.
				pvalu	e L~
	۸۰	value		•	
	/ P	, 0066		,0066	4.05
<u> </u>	7.14	= F _{2,15}			
	7.14 test stat	٠,١٠	•		
Decision: Reject Ho					
Conclusion: At a 5% le	wel of slar	ufice	ince.	we cau	Λ
Conclusion: At a 590 le	of the non	ulat	ON ME	ean pol	lotion
levels at so	wie (arat	loot	-010/0	of thes	0
					<u> </u>
locations are	aitterent to	om e	ach o	rner.	
	·				
Note: If we had co	outes out	put.	te and	alyze	the
differences between	, the mean	is we	id fin	d'hat	only
Means MA, Ma	. are diff	erent		م خیراد	. .

Question 2: 12 points: Environmental Studies

Biologists need to be able to estimate the weight of alligators in the wild, but weighing an alligator is a difficult and hazardous task. Length can be estimated from a photograph, which is much safer than trying to weigh an alligator.

So biologists would like a model that would allow them to estimate the weight of an alligator in the wild if they know its length. A regression line can be used to model the relationship between length and weight.

The data show lengths (in inches) and weights (in pounds) of a sample of 19 randomly selected alligators that were measured and weighed.

X=Length 94 72 72 74 74 86 86 88 94 69 85 82 88 90 89 68 76 90 78 Y=Weight 130 88 61 54 51 80 90 83 110 36 84 80 70 108 84 39 42 102 57 a. [3 points] Find the correlation coefficient and write out the complete hypothesis test to determine whether it is significant. Ho: \(\rightarrow = \rightarrow HA: \rightarrow \rightarrow = \rightarrow \r	The calculator output is given to you. Use it!! (Do not put the data into your calculator.)						
a. [3 points] Find the correlation coefficient and write out the complete hypothesis test to determine whether it is significant. Ho: D=O HA: D≠O Conclusion: Conclusion: Conclusion: Conclusion: Correlation Coefficient By and p≠0 H=8.2 P=8.443E-9 d=17 Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Y=-168.8 + 2.97(72) = 45.04 ≈ 45.0 pounds c. [2 points] Interpretation of Coefficient of Determination: Write a sentence in the context of this situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) 8(6.5% of the variation in weight can be explained d. [2 points] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every 1 unch increase in length, an alignificant of the product of the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every 1 unch increase in length, an alignificant of the product of the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every 1 unch increase in length, an alignificant of the product of the product weight for an alligator that is 18 inches in length. What should be your response? (a points) Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? (b) Should not use the line to predict the! weight of a 128 inches is not with in	-	78					
to determine whether it is significant. Ho: $\rho = 0$ HA: $\rho \neq 0$ $r = .93$ Pualue $\ell \approx 0$ Donato Prediction: Show work, round to values to 1 decimal place For an alligator that is 72 inches long, what is the weight predicted by the line? $\gamma = -168.8 + 2.97(72) = 45.04 \approx 45.0$ pounds c. [2 points] Interpretation of Coefficient of Determination: Write a sentence in the context of this situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) 8(0.5% of the variation in weight can be explained by the Variation in length. d. [2 points] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every 1 unch increase in length, an alligator's weight increases by 3.97 pounds, on average. e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ show work; round to values to 1 decimal place $\hat{\gamma} = -168.8 + 2.97(89) = 95.5$ Is the observed data value above or below the best fit line? Below Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Show both a should be your response? We should not use the line to predict the! weight of a 128 inches is not with in	Y=Weight 130 38 61 54 51 80 90 83 110 36 84 80 70 106 84 39 42 102	57					
PNALUE 4 x 1.000000000 8 L. 05 Reject Ho Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant For an alligator that is 72 inches long, what is the weight predicted by the line? Significant Sign	to determine whether it is significant. $H_0: \beta = 0 H_A: \beta \neq 0$ $t=8.22$						
b. [1 point] Prediction: Show work; round to values to 1 decimal place For an alligator that is 72 inches long, what is the weight predicted by the line? \[\frac{7}{r} = -168.8 + 2.97(72) = 45.04 \times 45.0 \times 45.0 \times 65 \] c. [2 points] Interpretation of Coefficient of Determination: Write a sentence in the context of this situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) \[\frac{8(0.596}{0.596} \text{ of the variation in weight can be explained} \] \[\frac{1}{0.90ints} \] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. \[\frac{1}{0.596} \text{ of the variation in length}, \text{ an alligator's coefficients} \] \[\frac{1}{0.596} \text{ of the variation in length}, \text{ an alligator's coefficients} \] \[\frac{1}{0.596} \text{ of the variation in length}, \text{ and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} \text{ of the best fit line tells us, and use its value in your interpretation.} \] \[\frac{1}{0.596} of the best fit line tells us, an	f = .95 Coefficient $df = 17$						
For an alligator that is 72 inches long, what is the weight predicted by the line? \[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1000000008 L.05 Reject Ho Significant 5=10.27						
c. [2 points] Interpretation of Coefficient of Determination: Write a sentence in the context of this situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) 86.5% of the variation in weight can be explained by the variation in length. d. [2 points] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every I inch increase in length, an aligator's weight increases by 3.97 pounds, on average. e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ show work; round to values to 1 decimal place $\hat{y} = -168.8 + 2.97(89) = 95.5$ Is the observed data value above or below the best fit line? Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? We should not use the line to predict the. weight of a 128 inches is not within	For an alligator that is 72 inches long, what is the weight predicted by the line?						
situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) 86.5% of the variation in weight can be explained by the Variation in length, d. [2 points] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation. For every 1 inch increase in length, an alignator's weight increases by 3.97 pounds, on average. e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ show work; round to values to 1 decimal place $\hat{y} = -168.8 + 2.97(89) = 95.5$ Is the observed data value above or below the best fit line? Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? We should not use the line to predict the. weight of a 128 inches is not with meaning the product of the should not use the line to predict the.	y = -168.8 + 2.97(72) = 45.04 % 45.0 pounds						
e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ Show work; round to values to 1 decimal place $\hat{y} = -168.8 + 2.97(89) = 95.5$ Is the observed data value above or below the best fit line? Below Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? We should not use the line to predict the weight of a 128 inches is not with in	situation that interprets (explains) what the Coefficient of Determination tells us for this problem, and use its value in your interpretation. Round to values to 1 decimal place as a percent (3 places in decimal form) 86.5% of the variation in weight can be explained by the variation in length, d. [2 points] Interpretation of Slope: Write a sentence in the context of this situation that interprets (explains) what the slope of the best fit line tells us, and use its value in your interpretation.						
e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ Show work; round to values to 1 decimal place $\hat{y} = -168.8 + 2.97(89) = 95.5$ Is the observed data value above or below the best fit line? Below Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? We should not use the line to predict the weight of a 128 inches is not within	weight increases by 2.97 pounds, on average.						
Is the observed data value above or below the best fit line? Below Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value? Overestimate f. [1 point] Prediction: Suppose that you were asked to use the line to predict weight for an alligator that is 128 inches in length. What should be your response? We should not use the line to predict the weight of a 128 inches is not within	e. [3 points] "Error Analysis": For a length of 89 inches: Find the residual (or "error") $y - \hat{y}$ Show work; round to values to 1 decimal place						
We should not use the line to predict the weight of a 128 inch alligator. The length of 128 inches is not within	Is the observed data value above or below the best fit line? Below Does the value predicted by the line overestimate or underestimate the observed (actual empirical) data value?						
We should not use the line to predict the weight of a 128 inch alligator. The length of 128 inches is not within		5					
The men all your lives (loves) in the date	We should not use the line to predict the weight of						
THE MINOR OF X VALUULA CIENGINST IN THE COURT							

[not between MINMUM & HaxIMUM x values inthedata)